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ABSTRACT

A theoretical model based on the linearization of the fluid
equations and Maxwell's equations for wave interaction in a uniform
plasma which is interpenetrated by a nonrelativistic electron beam
is developed. The effects of electron-neutral and electron-ion col-
lisions and temperatures of both the beam and plasma electrons are
included and no quasi-static approximation is made for the electro-
magnetic field. An external d.c. magnetic field is assumed to act
so that a general formulation is developed which is valid in the
limit of small d.c. magnetic fields and in the limit as the field
becomes very large. Graphs of the computer solutions are given for
the propagation constants in a beam-plasma system for the cases of
an unbounded system and for the TM wave solutions that may exist in
an axisymmetric cylindrical system in which the finite beam inter-

penetrates an unbounded plasma.
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Chapter 1

INTRODUCTION

The earliest work published on wave interaction in a plasma
system which is interpenetrated by a charged beam was that of

Langmuir in 1925.l

The theory was developed specifically to explain
the generation of high frequency oscillations in a hot cathode

discharge.

Although the parallel plate magnetron was developed in 1921 by
A. W. Hull2 and later refined by many scientists in the 1930's and
early 1940's to produce the cylindrical multiple cavity magnetron
oscillator, the development of microwave amplifiers proceeded rather
slowly. A. Arsenjeva-Heil and O. Heil,3 in Germany, pﬁblished their
findings of the development of a velocity modulated beam tube which
was later given the trade name Klystron. Later, in 1939,

R. H. Varian and S. F. Varian® and W. C. Hahn and G. F. Metcalf’

published their investigations of the klystron oscillator-amplifier.

With the advent of World War II, the development of the
magnetron and other microwave ampliers and oscillators was hastened
due to the obvious need in radar systems. The traveling-wave tube
was developed initially by R. K'ompfner6 at Oxford University in
1946, and later studied and improved by J. R. Pierce and L. M. Field
of Bell Telephone Laboratories7 as a broadband amplifier. The

backward-wave oscillator was later studied by Jones8 and Heffner.9



Another scientific field that received a great deal of interest
during and immediately following the war was plasma physics.
Although studies of high frequency oscillations involving stationary
heavy ions and electrons had first been published as early as 1906
by Lord Rayleigh10 who obtained an expression for the electron
oscillation frequency, little work was done 'in this area until the
1940's. Impetus was given to the study of plasma physics initially
because of the import;nce of undérstanding propagation of electro-
magnetic waves through ionized layers and the use of plasma dévices

such as T-R switches and high frequéncy electron tubes.

Pierce,ll

in 1948, investigated the theory of interaction of
an electron beam with an.ion cloud to explain the spurious oscilla-
tions he observed in traveling-wave tubes. Haeff12 demonstrated
that amplification was possible when one electron beam interpene-

wmber of authors investigated
1

trates another. Shortly after this, a
13,14,15

the double stream amplifier problem.

Since this work, there have been a 1arge‘number of papers
published concerning investigation of the beamrplasma interaction
including investigation of stability of the systems, temperatures
and collisions in the model and the effects of finite systems.
Reviews of the history and extensive references are given in the

16 and Fainbergl? and also the monograph

papers by Crawford and Kino
by Briggs.l8 The papers given in these references treat different

aspects of the beam-plasma problem and in general do not consider



the effects of magnetic fields, temperatures, collisions, and

13 has considered

finite geometries as a combined analysis. Crawford
the beam-plasma interaction process and has included temperature in
the plasma, plasma collisions, and boundedness of the electron beam
in a quasi-static approach with no d.c. magnetic field. Other in-
vestigations of beam-plasma interaction have recently been carried

out by the Plasma Research Group at Stanford.20

The purpose of this investigation is to develop a theoretical
model that includes the effects ofwtemperatures, collisions,
external d.c. magnetic fields, and finite dimension of the system
without using the quasi-static approach in describing the electro-

magnetic field.

The analysis that is developed does not consider gradients in
the d.c. electron densities or gradients of beam velocity and is
based on a linearization of the hydrodynamic equations and Maxwell's
field equations. The development is a small signal analysis and
is not valid for large signal perturbations of the d.c. quantities.
The theory is valid for small d.c. magnetic fields, but would not
be expected to hold when the pressures become non-diagonal tensor
quantities due to the effects of the d.c. magnetic field. In this
case, the forces due to the pressure terms would have to be written
as a divergence of a pressure tensor rather than a gradient as is

shown in the development of Chapter 2. In the limit of an infinite
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magnetic field, however, the equations describing the system can
be obtained by taking the limit of large magnetic fields since, in
this case, the pressures can be treated as scalar quantities which

have variation only along the magnetic field direction.

In Chapter 2, the equations are developed by linearizing the
original fluid and electromagnetic equations and are shown to yield
a consistent mathematical description. The potential functions from
which the transverse quantities are obtained are derived and the
relations between the transverse components and the potentials are

given.

Chapter 3 considers the unbounded beam-plasma system and the
dispersion relations for both transverse (V - E = 0) and longi-
tudinal waves (V x E = 0) . Graphs of real and imaginary parts
of the propagation constant along the direction of the beam are
given for different values of collision frequency, temperature,
electron density, and beam velocity for real excitation frequency,

w .

The general bounded system is considered in Chapter 4 where
the method used to decouple the potential equations is explained
for the regions containing the plasma and beam and for the region

containing only the plasma.

Chapter 5 describes a particular example, that of the infinite

plasma through which an electron beam of finite radius passes. The




solutions for the potential functions are exhibited in terms of
Bessel functions and Hankel functions and the boundary conditions
placed on these potential functions yield the allowable eigenvalues
and propagation constants for the problem. In this section, only
the solutions which have wave vector components in the direction
of the d.c. beam velocity are computed and the graphical results
for the real and imaginary parts of the propagation constant for
real values of frequency, ® , are displayed. It can be seen from
a comparison of these results and the results given for the un-
bounded system, that the gain curves are considerably less broadband
for the finite radius beam case and do not indicate as high a gain

value.

Although the question of stability in this problem is an
important one, no analysis of the system stability is developed.
Self21 has shown that collision frequencies of a very small magni-
tude tend to cancel the effects of "absolute' instabilities which
grow in time and therefore it is expected that the traveling-wave
instability would be dominant for propagation in the direction of

the d.c. electron beam velocity.




Chapter 2

THEORETICAL MODEL

2.1 Introduction

The two-fluid model chosen for this investigation of the beam-
plasma interaction system is based on a linearization of the fluid
transport equations, the adiabatic equation of state, and Maxwell's
field equations. The electron beam and plasma are assumed to occupy
the same region of space so that the most general formulation of
equations is developed. It is also assumed that the system is
excited by a high frequency source and the a.c. motion of the ions

can be neglected.

The cold ions provide the positive background charge required
to maintain a macroscopically neutral steady-state plasma and beam
system. The effects of finite temperatures of the beam and plasma
electrons are introduced through the adiabatic equation of state
and the perfect gas law. Electron-neutral and electron-ion colli-
sions are included by introducing effective collision frequencies

in the force equations.

No attempt has been made to consider inhomogeneities of the
d.c. plasma or gradients in the d.c. beam velocity. The effects of
electron-electron collisions are included only as they give rise to
their own species electron pressure term and effects due to ioniza-

tion, recombination, and attachment are not included explicitly.




In the development which follows, no quasi-static approximation
has been made which neglects the a.c. magneitc field as is usually
done in the treatment of this problem. It will be shown that keeping
terms of the same order in the linearization, including the a.c.
magnetic field terms, leads to a set of self-consistent equations
with the electric and magnetic fields satisfying Maxwell's constitu-
tive equations. Although it might appear reasonable to neglect the
a.c. magnetic field from a comparison with the electric field, it
is instructive to carry along the a.c. magnetic field terms. This
is particularly true in consideration of terms arising in the a.c.
power theorems (Appendix A) and the dispersion equations for trans-
verse waves (V - E = 0) where terms arising from the a.c. magnetic

field are of the same order as terms of the quasi-static results.

The description of all quantities is referred to the fixed
laboratory frame and it is assumed that the electron beam that
traverses the plasma is nonrelativistic. The description of the
beam quantities in the fixed reference frame is obtained by using
the Lorentz transformation of the electric field and the Doppler

shifted frequency.

2.2 Development of Linearized Equations

The system of equations to be linearized is of the form:

Maxwell's Equations

R
->
T (2-1)
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8

N ->
_ 3E |
VvxH-:= €5 3T + Je

Force Equation

3—\; > > > >
m n(—— +v Vv) - qn(E + v x B)

+
<
o
+
3
o
> M
<
fa)
™
~~
<
|
<
(o
~
n
] 4

Continuity Equation

> an
. 4+ —_— =
v (n v) 3T S

Polytropic State Equation

P n~' = Constant
Perfect Gas Law
P=nXKT
where

E = electric field intensity

H = magnetic field intensity
Mo = permeability of free space

€, = permittivity of free space
3e = electric current density source
Em = magnetic current density source
F= externally applied forcing function
S = particle sink (source) function

(2-2)

(2-3)

(2-4)

(2-5)

(2-6)
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q = charge of particles under consideration
n = density of charged particles
v = charged particle velocity
B=y &
o
P = pressure of charged particles due to thermal motion
T = temperature of charged particles
K = Boltzmann's constant
Y = compression constant which for adiabatic conditions
is the ratio of specific heat at constant pressure
to specific heat at constant volume
GB = velocity of particles that collide with the charged
particles under consideration
qu = effective collision frequency for momentum transfer

of the charged particles of velocity v with particles

of velocity 38 .

In obtaining the collision term for Eq. (2-3), it was assumed
that collisions of particles of charge q and velocity vV with
particles of species B is such that the momentum transferred is
proportional to the relative velocities before collision, that is,
the species B8 1is assumed to have essentially an infinite mass and
the effective collision frequency gives an average measure of the
momentum transfer as if all collisions were "head on". This
approximation assumes collisions of charged particles with neutrals
or ions of much larger mass than that of the charged particlés under

consideration. Thus, scattering collisions which would give rise to
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the temperature of the charged species are not considered separately
in the collision frequency term. The randomness of motion is ac-

counted for in the pressure term of the force equation.

A linearization of the set of equations, (2-1)-(2-6), is
obtained by using the assumption that each variable is composed of

a steady and a time varying part. Thus, each term is written:

P
= E_ El (2-7a)
A=H +0 (2-7b)
o) 1
> > -
V= v + vy (2-7¢)
> -> -+
Vg = Vaq + Va1 (2-74)
n = ng + ny (2-7e)
P = PO + P1 (2-7f)
T=T +T (2-7g)
> + +3
Je = Jeo el (2-7n)
> -+ ++ 0
Jm = Jmo Jml (2-71
S = SO +8 (2-73)
F=F +F (2-7K)
F = Fo 1 -

where the (o) subscript refers to the steady, time invariant

quantities and the (1) subscript refers to the quantities which
have time variations. Substitution of these quantities into Egs.
(2-1)-(2-6) yields two sets of equations when terms of the zeroth

and first order are equated separately.
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o8y
-> -»>
VXE -5 -
> >
VxXxE =-4J
o) mo
->
ﬁ = aE +qn_ v, + + 3
VxH) Se g rtaln, vytny v+ d,
> > >
VxH =qn v +4J
o o o eo
->
3Vl > >
mn(—=+ {v_ - v} v, + {v1 . v} vy +m nl{v . v} v,

o) o
o > > >
- mng g v B(vo BO) + Fo

Vln, +n,. ve.v +{v. -V}
nl n VO Vl no

1
on
1
-3t S
v} n, = S

(2-8a)

(2-8b)

(2-9a)

(2-9b)

fan 2

(2-10a)

(2-10b)

(2-11a)

(2-11b)

(2-12a)
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Po n' = Constant (2-12b)
Pl = K(nl Tb + n, Tl) (2-13a)
PO = no K TO (2-13b)

In Egs. (2-10a,b), the collision term was split so that the
collision frequency v:B for the steady velocities can be different
from that describing collisions for the time dependent velocities.
One would expect that the collision frequencies would be different
on a physical basis since the cross section for collision is velocity
dependent. Also, Egs. (2-12a,b) are obtained from Eq. (2-5) by
using the first two terms of the binomial expansion. The convection

currents in Egs. (2-9a,b) are written explicitly in terms of densi-

ties and velocities and only external current sources are contained

. >
in Jeo,l .

If we make the additional assumption that the steady variables
30 s PO , and ng have no spatial variation, we obtain the follow-

ing set of equations:

<>
-> BHl >
VXEl_—uOW—Jml (2—13&)
> >
v x Eo = - Jmo (2-13b)
oF
> 1 > -> >
v x Hl = e, 5%t q(no vyt vo) + Jel (2-14a)
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- -
VxH =gqn v +J (2-14b)

¥
¥

>

Y

1 > > | _ b > >
m no<_5f + {vo - v} Vl) = q nO(El t vy xug Ho+vvo xu Hy)

> > > >
+qn(Ej+ v X ug Hb) -VPj -mn_ I ¥ (v, = v,.) (2-15a)

8 B 1 Bl
o ,> > 2
- mn, 2 vqs(vO - VBO) +E
_ -> > -> _ le) -> > ->
0=q no(E0 VX g Ho) m n_ g VqB(VO - VBO) + Fy (2-15b)
anl
nvo-v o+ {v_- v} -t Sl (2-16a)
0= SO (2-16b)
Y Po il
Pl sz —_— (2-17a)
n
o
P n_' = Constant (2-17b)
o o
Pl = K(nl To + ny Tl) (2-18a)
Po = ng K TO (2-18b)
Substituting Eq. (2-15b), multiplied by nl/nO , into Eq.
(2-15a) gives the first order force equation:
v
l > > _ > -> > -> e
m no<;§E + {vo v} vl> = q no(B1 vy X Ho VX Mo Hl)
(2-19)
> > + > nl >
- VP1 - mng g qu(vl - VBl) Fl - E;'Fo
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The remaining first order equations are written:

>
VXE T -u, 5 - Im
>
N 3
H, = L (n. v, +n, v) +
VxhH =e,5pta 1t
Bnl
nov'v1+{v'V}n1=’_zs?+Sl
o . Y PO nl
L=
n
(@]
Pl = K(nl To + nO Tl)

Similarly, the zeroth order set is written:

> >
vV x EO = - Jﬁn
> _,++
vV x Hb =qn v, JeO
- + -
0=gq no(Eo Vg X ug Hb) mn_ g v
0=S8
o]
-y
P n_ = Constant
o o

PO = no K Tb

We now define a thermal sound speed,

rrid

v -v )+

o) Bo o)

u , such that

(2-20)

(2-21)

(2-22)

(2-23)

(2-24)

(2-25)

(2-26)

(2-27)

(2-28)

(2-29)

(2-30)



B

u? . (2-31)

Using Egs. (2-23) and (2-30) to relate n, and P, , we can put the

first order set of equations in the final form:

>
-> 31 >
VXE =-u 5F-9n
5F P
> 1 - 1 - *>
VxXH = -¢ —=+ q<; v, + v > +
1 o dt o1 mu? © el
v
1 > > _ > -+ > > =d
m no<'at + {vb v} v%) =qn (El + vy X ug H + Vg X Mg 1)
> -+ > Pl >
- VPl -mn_Iwv B(vl - vBl) + Fl - Fb (2-3u)
8 mu2 n
29 Y +{V_-V}P = 1, 2 g (2-35)
Ny MU=V = vy + Ay 17" 3 tmut 5 -
The zeroth order set remains:
> > 5 \
vV x Eo = - Jrno (2-36)
H = v o+ J (2-37)
VxH, =aqn, v, eo -

o
1

> -> > o > >
=qn((E + Vg X Mg H)) - m ng g qu(vo - VBO) +F, o (2-38)

0=2S8 (2-39)

(2-32)

(2-33)
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The fact that Eq. (2-39) forces the problem to have no constant
sources or sinks which produce charged particles of charge q and
mass m 1is a direct result of the restrictions that n, s 30 , and

P, have no spatial variation.

2.3 Electron Beam-Plasma System Equations

In developing the equations for a combined beam-plasma system,
each species of electron (e.g., beam electron) must satisfy, sepa-
rately, a force equation and a continuity equation and it is assumed
that each species is governed by a polytropic equation of state
(Pn"Y = Constant) and the perfect gas law. This is equivalent to
saying that each electron of the combined system can be identified
at any time and position as being associated with the beam or plasma.
Maxwell's field equations then couple the two sets of fluid equations

through the electric and magnetic fields associated with the elec-

tron motion.

The purpose of this investigation is to consider wave
propagation in a beam-plasma system and thus it will be assumed
that all field quantities can be written as explicit functions of
time and the coordinate along the beam direction. We shall also

assume that all field quantities can be expressed as:
> - > j (wt-kz) _
Q(r,t) = Ql(rt) e s (2-40)

> . . . e . .
where r is a three dimensional position vector, w is the radian

excitation frequency of the wave, 2z is the direction along the
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beam, ;t is a vector describing the coordinates transverse to z R
k is the propagation constant in the 2z direction, and t and j
are time and the square root of minus one respectively. The actual
physical quantities are obtained by taking the real or imaginary
part of Eq. (2-40), thus:

Q@) = Re(Q, (B I WEK2)y o In{Q, (3,) &3 WEH2)y
(2-41)

The time and space dependence can also be interpreted in a different

manner if it is assumed that double-sided Laplace transforms have

been taken so that

o -

Q, (w,k) = J J Q) dlwt-kz) 4 4, (2-42)

=—» tz-w

The time and space dependence, is recovered by the inversion

integrals which are taken along appropriate contours.

The first interpretation will be used here since the purpose
of this investigation is to study discrete propagating waves excited
at a single real frequency, w . Whether the first or second formu-

lation is adopted, however, the derivatives with respect to time and

the 2z dimension appear as:

-8_(3.:.]:.-) jw Q ﬁ-b - jk Q (2-43)
3t Y1 0 T3z Xy

for all of the first order field variables and therefore, the results




18

derived in this paper apply equally well for real wave solutions or

solutions in the transformed space.

The equations of the first order describing the beam-plasma
system are written here with the explicit dependence on z and t
being suppressed since the same term multiplies all variables of the
first order. Thus, we arrive at the final form for the first order
equations describing the beam-plasma system where the subscript (1)

is implied but has been deleted from all first order terms:

>
VxE+jou H=-J (2-L4)

> +> > > >
VxH-jue E+eN v +N V + V) = J, (2-45)
g
P
> > ->
mN(GGu+v )V +N (E+Vv_xuH)+vw =F - —P__%
D PP pe p~ oo P P 2N PO
P
. -> > -> > > > (2-46)
mNb(j{w—ka}+vb)vb+Nbe(E+vauoHo+VbxuoH)
F b3 (2-47)
+Vpb—Pb—mTNbo -
% b
wulmN Vv +3j0P =8 (2-48)
% P P P P
2 0.’ 3 — - —
umebv vb+;|(m ka)Pb SR (2-49)

The subscripts b,p refer to the beam and plasma properties
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respectively. In this final form, the variables are defined:

d.c. space and time invariant electron densities

d.c. electron beam velocity
d.c. magnetic field intensity

a.c. electric and magnetic field intensities

respectively
a.c. electron velocities

a.c. electron pressures

2
nb,p mub,p where nb,p are the a.c. electron

density variations and ug b * YKT_ . are the
H

—'p,
squares of the thermal sound spe:ands
radian excitation frequency
magnitude of the electronic charge
mass of the electron

effective collision frequencies for electron~-ion
and electron-neutral collisions
propagation constant in the 2z direction

permeability of free space

permittivity of free space
a.c. magnetic source current

a.c. electric current source

a.c. electron sinks (sources) for beam and plasma

electrons



|
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-fb D = external a.c. forces for beam and plasma electrons
9
_fb po = d.c. forcing function for beam and plasma electrons
b

respectively.

The collision terms in the preceeding equations were written
assuming that the heavy particles (e.g., neutrals, ions) are sta-
tionary so that momentum change is directly proportional to the
electron velocity. Thus, vb’p are effective collision frequencies
for the combined electron-neutral, electron-ion collisions assuming

that the neutrals and ions have no motion.

The d.c. equations are now written as follows:

VXE = -J (2-50)
o} mo
-> _ N -> + -> (2 5 )
VXHO--ebe Jeo -51
0 N E +F (2-52)
- - e -
P o po
0=S8 (2-53)
po
= E o+ H N VOV +7F (2-54)
0--er(EO Vbxuo o)—m LV Vb bo -
0= Sbo (2-55)
where
Eo = d.c. electric field intensity
Em = d.c. magnetic current source




.y N = = » m =S
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= d.c. electric current source

v~ = collision frequency of the d.c. beam for steady
momentum transfer

A = d.c. magnetic field intensity

o
Sb p = d.c. electron sinks (sources) for the beam and plasma
b
electrons
>
F. = d.c. beam and plasma force functions.

The restrictions imposed on the steady variables such as the
condition that Sbo and Spo be zero and the relations between the
electric field and the force functions -F)bo and -fpo are a direct
result of assuming that the beam velocity Vb and the densities
Nb s Np be constant in space and time. Thus, to have a completely
consistent system, we must apply or induce no constant electric or
magnetic fields unless they satisfy the Eqs. (2-50)-(2-55), and no
sources or sinks of electrons can act on the system if they are
constant in time. It is also clear that -ﬁo is, in general, not
independent of position, since part of the steady magnetic field is
caused by the steady beam current. However, currents in most beam
problems are very small or external magnetic fields are applied so
that the effect of this induced magnetic field can easily be neg-
lected. In all of the development that follows, the assumption will
be made that this induced magnetic field term can be neglected in
the first order equations and that any d.c. magnetic field is

constant in space as well as time,
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2.4 Transverse and Longitudinal Field Separation

We now separate the vector field quantities describing the
beam-plasma system into components along the beam (longitudinal) and
transverse to the beam direction. The general vector field quantity

is written as follows:
> 5 - -> -»> ->
Q(rt,k,m) = Qt(rt,k,w) a, + Qz(rt,k,w) a, (2-56)

where a + and 32 are unit vectors transverse to and along the
beam, respectively, and the subscripts t,z refer to transverse
and 2z directed quantities. By separating the del operator, V in

the form
-+ . >
V={v +a =—}= {\7t - jk az} s (2-57)

we can write the following relations:

A= A -2 A -3ka xA (2-58
VxA-VtxAt--asz,cz—jkazxA_t -58)
A = A ‘k A (2-59)
VA= A - kA -

i, e A (2-60)
V=V, ¢-ika, ¢ -
V. x (3 xA)=a(v. +A) (2-61)
t X8y XA = a Ve Ay

> -> -»>
Vt'(Atxaz)—az°(VtxAt) (2-62)

The beam-plasma set of equations, (2-44)-(2-49), is now written in

the separated form by using the above relations.
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> E . > 'E + 3 > _ >
-a, xV. E -jka xE Joug By = - J (2-63)
-f: . -> >
v, xE +Jwu H =-J (2-64)
-> . > . > - -> _
-a XVtHz—jkaZXHt-wa Et+e(vat+Nbvbt)-Je,c
(2-65)
PV
> . s > > b 'b\_~=*
VtXHt-]me E +e<vapz Nbvbz+ 2>- oz (2-66)
ML
Gu+v)mN v, +NeE +9v_xB) +V. P
Jw vpm vy + ¥ Vor X By t Pp
+ P >
=Ft-—-P—F . (2-67)
b muZN PO
P P
- > > > P >
(ju+v)nN v_+NeE -3%P a =F -—B _F (2-68)
P P P2 D z Pz pz _ 2y DOZ
P P
(j{m-—ka} \)b)mNb Vit I\lbe(Et Vpt X By Vi X Hg t)
+ 23 __b E (2-69)
"t Fp ® Fpt T 5 Thot -
u Ny
(3{w - XV, } + v.)mN_ ¥ _+NeE - 35kP a
Jlo = KV T /M Ny Vg T N By T IX By @,
* Foz T Fhoz (2-7
b )
2 o-’ -. +. = -
1.1pmNp(\7t Vot jk sz) juw Pp Sp (2-71)
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2 . v — . y -— - -
u mN’b(vt Vit jk Vbz) + J(w ka) Pb Sb (2-72)

2.5 Potential Function Equations

We can derive a set of coupled second order differential
equations involving potential functions from which the total field
solution is obtained. In this regard, we shall pick as potential
functions, the 2z directed quantities EZ s Hz , and the two pres-
sures Pp and Pb . If a relationship between these potential
functions and the other field quantities is found such that all
field quantities can be derived from these potential functions
alone and the potential functions are unique for the given boundary
conditions, then, we have obtained a unique solution to the beam-

plasma interaction problem.

The derivation of the potential function equations is long and
tedious and will not be presented here, but is presented in
Appendix B. Only the results of the derivation for the sourceless

or homogeneous equations are given here.

w2 2
VZE, + K2(1 - P - b - k2 )E,
2 © wlw = v el = KV - Gv)

(. wp_ €
solkef o o 1ilp (2-73)
Ign € \w- jvp u; P
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2 2

w (w=kV. )

v%HZ+{k2<1- P __B"7b >-k~°—}H
° wlw-3vy) w2 (a-kV-jv,) ) Z

b

2 2
w W
- jkeg P+ b E,
(w—jvp)z (m—ka--j\ab)2

eg< k2 uEZ ) . (2-74)
, (w - jjp) p

(w - jv.) m u?
w = Jv, 2

k2 42
{eQ<w - ka - b >}Pb
(v - kVp = vy )

- - 9 2
(w ka jvb)mub

+

1
Q

1 . Q2 5
VZ P + = (w - ) - k2u2 -l - —3 k242
t B wlw jvp 5 wp (v ? [w(w jvp) k up]} Pp
P '

(2-75)

w2 Wy e w? ik € szz_ﬂl\
.._P_pb+.’59 _O—OR\H-f] o Peir -
u? © w=3v 2 (w -3 v)2 z
P

p

[CwkV, ) CmkV -3 vy )-k2u2]

(w-kV,~jv, )2

k u? 2 xV. ue 2
+ wﬁ V. ue _____:ﬁl____ +V P, + fil__ll_iliz - f?. P (2-76)
P 00| (ykv ~jv.) bij b (w=jv_) u2) P
™% “I% p

2m 2 2 2
fKka e % %o 2 “ “b
+ ] 7 b Yty @1 - - Ez
(w—ka—] vb) wlw-j vp) w( w—ka-j vb)
- 2 m
+ gmkvb)"’b”o":oegH=0
(w-kV ) Z

b IV

1 .
2 _— — - - “k2y2-y2-02
Vs Pb + > (w ka)(w ka ]\)b) k Ug-wi-0

o3
<

“
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We have yet to derive the equations from which the transverse
field quantities can be obtained from the potential functions Ez

2

H , Pp ’ Pb . This is the purpose of the next section.

2.6 Transverse Field-Potential Relationships

From Eq. (2-67) with all the external sources placed equal to

zero, we obtain the relationship for v

pt °
. > > - > _
Gu + vp)m Np th - Nbe Bo a x th + Nbe Et * v PP =0 . (2-77)

We can represent the cross product for a right handed coordinate

system as

_>
a X v . = (v s (2-78)

where in Cartesian coordinates Eq. (2-78) becomes:

- -> _ > { > + > } = v > ->
az X Vp t = az X VpX aX pr ay = px ay pr <
0} -1 - v
px Py
- . = . (2-79)
0
1 Vpy Vpx

Eq. (2-77) can bewritten in the following form with the aid of Eq.
(2-79):
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((Gw + v.Om N Ne B ]
Ju T vpm Ry e
°vpt—-Vth—NPeEt
-NeB (Juw + N -80
e By Jw vp)m PJ (2-80)
or -
P E
- v - Ne
vV,=Al.(.tp pt (2-81)
pt m N
P
where
—(jw+v) Q
A= (2-82
-Q Qw + v )
7%
and
eBO
Q= — (2-83)

with A ! representing the inverse matrix of A such that

A-A! =T, the unit diagonal matrix.
The relation for {;bt is obtained from (2-69).
4 NeE -N 2 xH
> LF1. ) Ve Pp - Npe By - Npe Vg a4, X ti (2-84)
bt ~ m Nb ’
where
jlw - ka) vy Q
B = (2-85)
- Q j(w - ka) + vb_J

From Eq. (2-63), the expression for a
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1

Jo ug

<>
v, E, + Sk E} . (2-86)

Substituting this expression into Eq. (2-84) yields:

ka - Nbe Vb
> = VP -Nel--—E -j—7—V E)
v,, =B . .
bt .

m Ny

(2-87)

The result for Et is obtained from (2-63), (2-65), (2-81) and

(k2 - x2) _ kV. -1
> _ . o = _ .2 =-1 _ 2 _ b, =-1
Et_{]_______j[ wp wb(l _—w ) B
w uo EO
N v, H, wﬁ vy - K -
-{a x + (3 B" - —=— 1)V, E (2-88)
A € w t "z
o W uo eo

e =_1 e =_1
+ — . +—_ .
N A Vt Pp N B Vt P}{}

->
The relation for Ht is obtained from Eq. (2-63) and is written:

U 4

> k > ->
H = — x E, + = a xv, E . (2-89)
t wuo Z t

We have shown that all transverse field quantities can be
H

z?’ "z’
and the pressure Pp and P and therefore, the total field solu-

derived from a knowledge of the 2z directed potentials E

tions are uniquely determined as long as the potential functions are

themselves unique. This uniqueness is proven in Appendix D.



Chapter 3

UNBOUNDED BEAM-PLASMA INTERACTION

3.1 Introduction

The unbounded beam-plasma system is studied here to obtain
some of the gross properties of such a system. One can usually
obtain some physical feeling or insight to a phenomenon of consider-
able complexity when the most simple model for the problem is
investigated. It is with this idea in mind that we now investigate
the infinite dimensional beam-plasma system where the plasma and
beam occupy the same space. Collisions, temperatures, and an
external d.c. magnetic field are assumed to be present. Because
the system is unbounded, no boundary conditions are placed on the
beam and plasma quantities and the solutions to the system equations
for first order variations are plane waves which propagate in the

medium.

It should be noted here that all d.c. quantities such as
densities, pressures, beam velocity, and magnetic field are space
independent so that the system equations derived in Chapter 2 are
applicable. As a consequence of these assumptions and the assump-
tion of an infinite system, we must consider the effects of the
d.c. magnetic field caused by the electron beam since, for very
large distances from the axis of the system, the magnetic field

becomes very large.

29
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One could postulate a drifting ion stream which travels with
the d.c. electron beam so that this magnetic field is absent and
only externally applied steady magnetic fields exist in the problem.
Such a drifting stream would still maintain a macroscopically neu-
tral plasma and would not interact with the high frequency field

excitations.

In the following development, we shall adopt the assumption
of a drifting ion stream to compensate for the magnetic field
caused by the electron beam. Such an assumption is not necessary
in the small, finite system because the small magnetic field caused

by the d.c. electron beam can be neglected.

3.2 Mathematical Formulation

Since the system is infinite in all directions and is also
uniform, we can assume that all first order field quantities are

Plane waves of the form:

. > >
Q,Ft) = Q gl lwt-ker) (3-1)

where T is the three dimensional position vector in the space, K

is the propagation vector.

With the field dependence expressed as in Eq. (3-1), the

differential operations are expressed as follows:



where the factor eJ(
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5Q
1 .
St
> >

VQl"'j-]EQl )

wt=Ke1)

each first order term.

obtained in Chapter 2 are written in the following fashion:

v, > >
-2 + v +
m Np =< + e NP(E VP X Bo) m N

(3-2)

is suppressed since it multiplies

The set of first order, linearized, beam-plasma equations

>

+
VxE Ho

o4l T

. p -
vV x ﬁ + e(N 3 + N 3 + b b - € EE
P P b b 2 o ot

m U

v + VP
PP
> -
+
V. % uo H

(3-3)

(3-1)

(3-5)

(3-6)

(3-7)
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aP
9

o

2 . 3 . v
uZ mv (Nbvb)+v (Pb'vb)+

(3-8)

Using the relations of (3-2), this set of equations becomes:

o (3-9)
ka+3e(Nv+Nbvb+ Vb)+weoE=0 (3-10)
P P m uﬁ
. -> P > > > > _ _
m Nb(m - jvp) vP - NP e(E + vP X BO) -k PP =0 (3-11)
> -> . -+ R -»> + > ﬁ + - 'é )
m Nb{w - Vb - k - ]vb}vb -3 Nbe(E V. % Mg Vp X B
-k P, =0 (3-12)
uZmN(’JE-v)-pr=o (3-13)
@mNK %) - -V, - B P, =0 (3-14)
Equation (3-13) can be solved for PP , yielding
u?mN T
P =2 P (k.Vv) (3-15)
P w p
2 mN
P, = DD ¢ ) (3-16)
(w - Vb « k)
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>
We now assume that the beam velocity, Vb , and the d.c.

magnetic field, -éo » are directed along the positive z axis.
With this restriction, we can simplify the cross product terms
involving -\?b and -éo by representing the cross product using
tensor notation. The cross product of the unit vector gz with

>
any arbitrary vector F is written

X
> >
a xF=11 0 0(+«(F (3-17)
z y
0 0 0 F
z

for a right-handed Cartesian coordinate system.

The expression for -‘;p is obtained from Eqs. (3-11) and (3-15)

with the aid of Eq. (3-17)

AR
v =ji{-ii<’-2} - E (3-18)
P m w

where the tensors C and ]_2 i are defined as:

- Jv -3 Q 0
w = 3vy 3
C:= je m-jvp 0 (3-19)
0 0 w - Jv
N P
kxkx kx ky kx Z
kkz=l|k k X k kK k (3-20)
Ty Tx y 'y y 'z
kz kx kz y kz z
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eBo -1
Q= - and { } indicates the inverse of the matrix in
brackets.

The expression for -\;b is found similarly

> > -1
. ef- kR R
Vb= :] a D - > > ¢ {E+Vbxuo H} ’ (3-21)
w-V_ sk
b
where —_
> > . . |
w—Vb-k—jvb -3 8 0
= . > -> .
D=z]3Q w - Vb « k - jvb 0
-> &> .
0 0 w - Vb « k- vy

(3-22)

>
If kxE is not zero, Eq. (3-10) can be combined with Egs.
(3-9), (3-16), (3-17), and (3-21) to yield

w? w2t
4 2 _1x2)T-x2 R/T_EF R
kk+(ko ke) I kow C-kk

4

where I is the unit matrix,
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<
~4
"
o
o
o

(3-24)

and is the transpose of X _‘;b 5 kg = w(uo eo);5 .

The determinant of the matrix multiplying E in Eq. (3-23)
must be zero for non-vanishing electric field and gives the dis-
persion relation for kK as a function of w (or w as a function
of X) provided that no component of E is zero. If any component
of E is zero, (e.g., Ex = 0) , then the dispersion relation is
given by the relation that the cofactors of the corresponding

column elements of the matrix (the cofactors of the xx , yx , zx

terms) are zero.

We shall now consider two special wave solutions where

> > >

K x E = 0, defined to be longitudinal waves, and X - E= 0 ,

defined to be transverse waves.

>

3.3 longitudinal Waves—— k x E = 0

If kxE=0 ,» there is no a.c. magnetic field associated

with the wave, and Eq. (3-23) reduces to
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(3-25)

E
} =¥
<t¥|] AV
) UFN
5"#
]
|._l
L)
aa 2
(1]
[em]

We now consider a particular example of a longitudinal wave
where k is directed along the positive =z axis, the direction of

the d.c. magnetic field and the beam velocity. Equation (3-25) is

i

then written

02 a1 2
Kf- R(E-% % Bl _Blf, b2
w Z Z W w (w_v k)
0
—2 2z 2 0
E

=0 . (3-26)

The dispersion relation is given by the condition that the
‘ _ N
third colum of the matrix multiplying E be zero, that is, the

Xz , yz2 , and 2z elements are zero.

With k directed along the positive =z direction, the matrix

) Q jﬂ 0
u)t P
C-k kR =—L _|_ 30 g 0 (3-27)
Z Z W 92—92 P
P
QZ_QZ
0 0
k2 u?
QO - 2P
p wo]
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where
QP = w- j\’p . (3"28)
Similarly,
> > 2 -1
) kz kz 4 -
(w - Vb kz)
Qb iQ 0
1 .
Pary El LU 0 (3-29)
Qb -
QZ _ QZ
0 0 D
2 .,2
oG
b
(w - Vb kz)
where
Qp Fw-V k - vy (3-30)
and
— _
1 0 0
> o
(= Vb kZ
I+t ——=_>3=]0 1 0 (3-31)
k (v - Vb kz)
0 0 2
w -~ Vb kz

+
Since the xz , and yz terms of the matrix multiplying E,

are identically zero, the only relation obtained fromthe dispersion
equation is that the 2z term must vanish. Thus, the dispersion

relation becomes:




38

2 2

W w
1. D — - b —=0 . (3-32)
w(w—jvp) - kzup (w—szb)(w—kZVb—j\)b) - kzu.b

Calculations were carried out for the longitudinal waves given
by the dispersion equation (3-32). In particular, the longitudinal
waves which indicate the possibility of amplification, that is,
have both positive real and imaginary propagation constants for
real excitation frequency, were investigated by obtaining computer
solutions to the fourth order dispersion equation. The results for
various parameter values are shown in Figs. (3-1)-(3-20). The
results of these computations can be summarized in the following

way':

= 0)

Warm-Beam--Warm-Plasma  (No Col;isions——v = vy
1. For values of beam velocity, Vb s much greater than the
adiabatic sound speed in the plasma, up s the warm plasma calcu-
lations differ from the cold beam-plasma case only close to the
region = uy 0 where the effect of plasma temperature limits the

real and imaginary parts of the propagation constants to finite
values (Figs. (3-1) and (3-2)).

2. It was found that maximum gain is obtained when w = wp and
the beam velocity is greater than but on the order of the adiabatic

sound speed in the plasma (Fig. (3-3)).

3. The effect of the maximum gain parameter (Vb/u.p)max was to

peak the gain and make the real part of the propagation constant a
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smooth function of w/w D so that no sharp break in the real part
of kZ versus m/mp occurred. Any value of Vb/ up not correspond-
ing to the maximum gain value left a hump in the real part of the

kZ versus wcurve at w = “y (Figs. (3-3), (3-4), and (3-5)).

4. It was found that the maximum gain obtained near the plasma
frequency for large values of Vb/ up saturated for values of beam

density such that (“’b/“’p)23 4 (Fig. (3-6)).

5. The effects of beam temperatures are not seen unless U v up
in which case the beam temperatures tend to decrease the amplifier

gain and increase the range of w over which gain occurs.

6. TFigures (3-7) and (3-8), show all four solutions to the dis-
persion relation of Bq. (3-32) when collisions are absent. All
solutions with complex parts will exist with complex conjugate
counterparts sinée this dispersion equation without collisions is

real.

Warm-Beam--Warm-Plasma (Collisions Included)

1. It is shown in Figs. (3-9)-(3-20) that collisional effects are
most noticeable when:
(a) the collision frequencies are on the order of a
tenth or more of their respective plasma frequencies
(b) the beam velocity, Vb , 1s much greater than the
sound speed of the plasma, u

(c¢) the beam density is small compared to the plasma density.
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UNBOUNDED BEAM-PLASMA CALCULATIONS

For the graphical results shown in Figures (3-1)-(3-20) the

following labels are used:

o |F
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++++ Cold Plasma D= .001

—— Warm Plasma

Fig. (3-2) REAL PART OF k(up/wp) VERSUS (w/wp)
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2. In Figures (3-17)-(3-20), it is shown that the collision
frequency of the beam electrons tends to increase the gain of the
amplifier while collisions in the plasma decrease gain. The reason
for this is shown by the fact that the a.c. velocity of the beam

is in phase with the electric field when w0y is greater than w .
After collision, the velocity becomes 180° out of phase and can

give energy to the field.

3. It is somewhat questionable whether collision frequencies on
the order of the plasma frequency could be obtained in practice
for a beam-plasma system, however, the calculations were carried
out to indicate the general mathematical trends and effects of

collisions.

Physical Mechanism for Longitudinal Wave Amplification. We

ri Invistigatc the physical mechanism by which longitudinal waves
are amplified. To do this, we shall consider the simplest case of
an infinite system with no collisions or temperatures and with a.c.
velocities directed along the beam and the d.c. magnetic field.

For longitudinal waves, the curl of the electric field vanishes,
kxE) =0 , which makes the a.c. magnetic field also vanish. The
dispersion relation, then, is derived from (3-10) which is just the
condition that the sum of the displacement, plasma, and beam currents

be zero.

Upon substitution of the other constitutive relations, (3-11)-

(3-14), the Eq. (3-10) becomes:
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w? w? 2 x v
Ju eoﬁz< —-12’-— b bz bz = 0 (3-33)
w w (w-kZVb) w( w-szb ) :

where the terms correspond to displacement, plasma, beam, and beam-

space-charge drift currents respectively. The dispersion relation,

then, is

5 > (3-34)
w (w - kz Vb)

which is the result derived in (3-32) for a cold, collisionless

system. Equation (3-34) can be solved for kZ giving:

wé ?
(0 - k_ V)2 =z 2 , (3-35)
Z b mz__wz
P
(w-k_ V) —H’w 43 —b " (3-36)
w - = + :-J—-————-r -
z'b T (w2 - w?) (wlz)-mz)'fe
L -, % |
kz-v-— l+j—;——2—;§ (3-37)
b (wp-w)

Equation (3-37) indicates that the system could possibly
amplify as long as the plasma frequency is greater than the excita-
tion frequency, w , since kz can have both positive real and
imaginary parts. Furthermore, the equation suggests that in the
absence of collisions and temperatures, the gain could become

infinite when the system is excited at the plasma frequency.
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Introducing only beam collisions or beam temperature does not change
the possibility of infinite gain, whereas plasma collisions and

temperature restrict the gain to a finite value.

We can see the dependence of each of the current terms on

frequency if Eqs. (3-35)-(3-37) are substituted into Eq. (3-33).

The result is:

w2 w, (w2 - wz);5
_<1...P.+j b P >}:0 , (3-38)
w2 w2

where, again, each term corresponds to displacement, plasma, beam,
and beam-space-charge drift currents respectively. A phasor dia-
gram of these currents is shown in Fig. (3-21) corresponding to the
case where Im(kz) is positive (bottom signs) and wp is greater

than w .

Power interaction can be studied by investigating the terms
of Ez . 3* which are obtained from Eq. (3-38) after taking the
dot product of Ez and the conjugate of (3-38). We can see from
Fig. (3-21) that the power term involving the space-charge of the
beam has a negative real part indicating that this term gives energy
to the system while the term involving the a.c. beam velocity has a

positive real part indicating that it absorbs energy from the system.

The terms involving the displacement current, the plasma current, and
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the imaginary portion of the beam space-charge current are energy
storage terms. It should be noted that the energy stored in the
plasma and free space per unit time is the negative of that stored
by the bunched electrons of the beam so that a resonance exists
between these two systems. At the same time, the energy transferred

from the bunched electron beam is equal to the energy picked up by

the a.c. beam velocity.

At first, there seems to be no net gain of energy in the
system, however, the increase of a.c. beam velocity is also related
to the electric field Ez through the force equation, (3-12).
Thus, an increase in electric field is also produced so that the
total energy of the system incfeases. The beam space-charge, then,
provides the gain by interacting with the electric field with a loss
of its d.c. velocity, providing the necessary energy. We have not
included anywhere in this discussion, the gradient in d.c. beam
velocity due to this energy transfer. It has been assumed that the
energy transfer per unit length is small so that there is little
change in the d.c. beam velocity. The beam interaction process is
the same as that which produces gain in conventional traveling-wave

tubes except that the plasma, rather than a metallic helix, provides

the "slow-wave structure."

A major distinction between the plasma and helix "slow-wave
structures" is that the plasma may enhance the gain mechanism. The

plasma is necessary for this gain system because it provides the
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inductive energy storage system that allows the electric field to
become quite large. In fact, the reason that this system predicts
infinite gain near the plasma frequency is that near reasocnance,
LT the electric field associated with the plasma oscillations
become very large and, therefore, the beam interaction with the field
is greatly enhanced. Introducing collision frequencies in the
plasma, temperatures in the plasma, or finite dimensions of the
system will not allow the plasma oscillations to approach a very
large level near the plasma frequency and thus the electric field

and the gain per unit length will remain finite.

> >
3.4 Transverse Waves-- k * E= 0

> >

If Xk + E=0, there is no volume charge for the electric
lines of force to terminate on so that the electric field is
solenoidal and the pressures are zero. The equation governing the

electric field, (3-23), reduces to:

- -1
k2 w? u?
E%Z -k T - —EL-JZI -k k -%}
o} w w

C
\
> > > > -1
2 2
-2 w-T KT b " ls - k}jub
w? (w =V + k) (w =V * k)
> >
- k Vy >
(T + —)*E=0 . (3-39)
(m-Vb°k))

We shall again choose a special case in which Xk is directed

along the positive =z axis. The dispersion relation is given by
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the condition that the cofactors of the third column elements of
- - -* » . -

the matrix multiplying E be zero. Using the relations obtained

from the longitudinal waves section, Eqs. (3-2u), (3-27), (3-29),

and (3-31); we obtain the single relation

2 Q -V 2
2 -1 - )2 R (T ) je o WD %
(o] O w Q;—Qz Omb wz 91:2)_92

w2 2 2
_kg_E—L_-kg-mE(w-vbkz)—L =0 (3-40)
QZ _ QZ wZ 92 - QZ
D b
or
g ) 2
i () (w—V k)
K2 =k2!7 - 2 .5 bz | | (3-41)
Z o)

w(@, + 2) w(e, + Q)

Equation (3-41) describes the left and right hand circularly
polarized waves that propagate in the beam-plasma system where the
(+) sign corresponds to left-hand polarization or counterclockwise
rotation about the d.c. magnetic field and the (-) sign corresponds
to right-hand polarization or a clockwise rotation of the electric
Vecfor. If the term 35 X uoﬁ had beeh neglected as in a quasi-
static approach, the last term in Eq. (3-41) would have been

k2 2
_o (3-42)

In any event, there is no gain mechanism in this transverse

field case, so that no growing waves can be excited. This fact is
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a result of there being no a.c. space-charge current which may

interact with the electric field.




Chapter

BOUNDED BEAM-PLASMA INTERACTION

4.1 Introduction

We have shown in Chapter 2 that the field quantities of the
beam-plasma system can be derived from a set of scalar potential

s P, and P_ ; which are the 2z directed

functions, Ez ’ Hz b b

electric and magnetic fields and the plasma and beam pressures
respectively. In general for small signal conditions, we have seen
that the equations for these potentials are a set of second order,

linear, coupled equations which may have coupled boundary conditions.

The method of solution that will be employed here consists of
decoupling the equations by means of a similarity transformation,
which, in general, causes the boundary conditions to be coupled.

We essentially change the basis functions by which we describe the
physical system to a new set of basis functions which are uncoupled
in the set of second order equations. This approach to the problem

is similar to that used by Bresler and Marcuvitz,22 Sancer,23 and
24

more recently by Chen and Cheng.

The method is nearly impossible to carry out algebraically for
a general system and computers are necessary to determine the
eigenvalues of the basis potential functions and the propagation
constants. Once the eigenvalues and propagation constants are

found, however, the exact solution of the problem is exhibited in

|
y

>
.l
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terms of appropriate eigenfunctions.

Other techniQues, such as a perturbation method which treats
the coupling terms as forcing functions for the equation, could be
used to solve the coupled set of equations; but this becomes some-
what tedious when there is coupling between many of the basis
functibns. Such a technique has been used by Nield25 in investigat-
ing guided waves in a warm plasma filled waveguide. We shall now
describe the transformation approach to solve the general bounded,

beam-plasma interaction problem where the beam and plasma may

occupy different regions of space.

4.2 The Similarity Transformation

The four homogeneous differential equations derived in
Appendix B, Egs. (2-73)-(2-76), can be expressed in terms of a
four-vector and the coupling exhibited by a coupling matrix. The

expression is concisely:

2 T . =
Vt{X} +F {X} =0

or
(s )
Ez fll f12 f13 fl;\ Ez
H ° . L) ® H
V20 Foel < Z Nz 0 (4-1)
P - o ° © P
p - . . P
\P>b \ful °© o0 o0 0 fuu// \Pb/
subject to the boundary conditions. If we can find a transformation
matrix, S s such that §_1 -F+S=1h , where F is the coupling
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matrix of Eq. (4-1) and A is the diagonal eigenvalue matrix of

F 3 then we can transform the four-vector -)E into a new vector -13
by the relation X=5. U with the result that the transformed set
of equations are uncoupled. Following this procedure for Eq. (4-1)
gives:

V%{x} +F e+ {X=0

.0 (4-2)

it

+
X =

== > == =z -»>
vZ{(S§ - U} +F-{S- U} =0
Operating on the left by 51 and realizing that 31 commutes
with the transverse Laplacian operator as long as S is at most a

function of z coordinate, we obtain:

v%{§'1 cS-M+ G F-S - =0 (4-3)
or

v2{U} + A {Ul=0 (4-14)

subject to the boundary conditions that are determined by the
> e
boundary conditions on X and the transformation X =S * U. In

its explicit form, Eq. (4-4) is written:

N\ 2 N N
U /Xl 0 /ﬁi
U A2 U
vz 2\, 2 i >< 2 N2 (4-5)
Us A3 Us
2
Yy 0 My / \fﬁb)
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where the A?'s are the eigenvalues of the matrix F . In this
uncoupled form, we can choose the set of eigenfunctions Ui and
use the boundary conditions to select. the allowable eigenfunctions

and eigenvalues for the problem.

This diagonalization procedure can always be carried out as
long as the matrix F is semi-simple--that is, as long as the
matrix T has a camplete set of eigenvectors regardless of degen-
eracy of eigenvalues., If is not semi-simple then the transformed
matrix A can be put in the Jordan canonical form with the eigen-
values of T on the diagonal and ones or zero's in the position
adjacent to two equal eigenvalues. »

Thus, in the Jordan canonical

form, A might appear as

2
)‘l 1 0 0
2

_ 0 Al 0 0
A= ) (4-6)

0 0 >‘3 0

2
0 0 0 Au

The transformation matrix S that must be used is the matrix
formed by filling fhe colums of S with vectors proportional to
the eigenvectors of the matrix F . In the event that T is not
semi-simple, we can construct S such that the set of vectors is
linearly independent with the result that the transformed matrix,v
A » 1s in Jordan canonical form. A more thorough discussion of this

26
problem is given by Pease.
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If the eigenvalues of T are not distinct and the matrix T
is not semi-simple, then a perturbation method may be used to solve
a set of equations as in (4-6) where the coupling term is treated

as a perturbing source function.

4.3 Beam-Plasma Region

For the region of space occupied by both the beam and plasma,

the set of relations describing the interaction is written in the

following form:

N[ AYA
Ez fll f12 f13 flu Ez
H . . L[] L] Hz K
YOI E SRRV A AW 1)
t P t - . . P
p L] . L] L] p
\Pb/ \flu s ‘es fuu/ \Pb
where
W2 2 '
fll = k2 1 - D - wb - k2
°© w(w-jvp) w(w—ka—jvb)
fl2 =0
£ .= 3 ke [YY % _ j;>
13 T e\ w-jv u?

w? 2
= -k €8 J/ .p + wb.
Ifw-jvp)z (w-ka-jvb

H
1

21 )2



22

23

24

31

32

33

34

41

42

(1]
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w2 w2 (w-kV, )
k2 - P - b b > _ kz
o s 2¢ 1y =
w(w jvp) w (w ka j\)b)

k2 u2
en - __P__.>
(0 - jvp)

(w = jv_) m u?
P

P
k2 2
en <n - ka - ub >
(w—ka-jvb)
(w - kv - jvb) m ulz)
2 2 m
; k N Q wp .~
(w - jv_ )2
w jvp

ﬂ w “o Eo wz
€ (o - jvp)

(9]
e

uiz- wlu-3vy) - K22 - w2 -

b (w-jvp)2

kﬂzmmgso

[w(w=j vp)-k?-ulz) :y

“ s )

-2 My 2
- — V. u ecwl{l -
e(m—ka—jvb)2 b e pho’o (

(w-ka)méuo e, m 2

e(w - ka - ]vb)

w(w-3 vp) w(m—ka-j vb)/
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2 2
£ =“’bkvb"o o _ %
B - ) W
= ..l_ - - 3 2 ;2 2
fay = " (w-kV ) (w KVp=iv,) - k u - wp
w2
- - =3 - k2 42
a2 [(w kL) (u KV -dv) - k ub]
- - 3v. )2
(w kVy ]vb)
k u?
ergvb"'oeo _—_Ub_—+vb
(w-—ka—j\)b)

The eigenvalues of F are found from the relation

Determinant(F - A2 I) = 0 (4~8)

which gives a fourth order equation in A2 and can be solved by

computer techniques to yield the four eigenvalues A:ZL cee )\ﬁ .

Since we have to construct the colums of S proportional to
the eigenvectors of T , we can simply construct the vectors § ik
proportional to the cofactors of one row of (F - A]2< I) . This
can be shown by an actual solution of the simultaneous equations

for S ik + Thus, one possible similarity transformation matrix

might appear as
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2 2 2 2
F.G9) F11%) F,1(03) Fll(xu)

2 2 2 2
F,(09) F,(%) F1,(3)  FL,G8)

wll
"n

(4-9)
2 2 2
Fl3(xl) Fl3(A2) F..(02) F13(A4)

2 2 2 2
Flu(xl) Flu(xz) Flu(xa) Flu(xq)

where the Fij(xi) are the i,j th cofactors of (F - Ai I . It

is clear that we cannot construct the columns of S in the above
manner if Ai = Ag or one of the eigenvalues is zero since S
would then have no inverse. Thus, if S has a repeated eigenvalue,
Ag s Wwe must construct the first vector in the manner described
above and construct the remaining vectors for Ai such that the

S matrix is composed of a set of linearly independent vectors.

Under the transformation given by Eqs. (4-2)-(4-4), then, we obtain

the transformed set of equations

/
61\ a2 0 N/ Ul\
U 2 U
v%< 2 -+< "2 , -{ 2 N2 g (4-10)
Us . 3 Us
VRN Aﬁ// \f%b/

subject to the boundary conditions given by X = S - 6 and the
boundary conditions on § . We may pick, then, the class of func-
tions that generally satisfy Eq. (4-10) and use the boundary
conditions to restrict these functions and the eigenvalues to an

allowable set.
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4.4 Plasma Region

The set of second order differential equations for the plasma
region is obtained from the general beam-plasma set by placing all

plasma quantities equal to zero. The set of equations becomes:

I f - ZI
2 L[] - g,
vi H g21 293 H 0 (4-11)

p g31 832 833 o)
or

V%{Y}+=G=- Yr=o ,

where

w2
k2 <1 - ——P-——> - k2

(w-jv )
wwjp

=0

_.ke/wuoso _l_>

®13 7 Meq \m - Jv u?
P P

w2

— jk e Q ——2_
o] . 2
(w—jvp)

u)2
2 P Y _ 2
€22 ko< ) K

(w=-jv_)
wwjvp

k2 u?
(w-J vR)

(m-jvp) m u123
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3 2,2
jkeOQ wpm

831 ~
e(w - jv_ )2
w = Jv,
wH_ e w
g =Mg (2 0%
32 e @ - v
P
g = X (uo - v ) = k2u2 - 2
3375
P
2
- 5 -2 uz])
(w—jvp)z p p

The similarity transformation T is obtained from the

cofactors of G . One possible transformation is

_— P

2 2 2
Gll(ul) Gll(u2) G13(”3)

3
n

2 2 2 _
Glz(ul) G12(u2) Glz(us) (4-12)

2 2 2
G 3Cup) G 3(u3) G auf)

where the Gij(uﬁ) are the i,j th cofactors of (G - ui I) and

ui . u% are the eigenvalues of G obtained from

Determinant(G - p2 I) = 0 . (4-13)

The transformation of (4-11) is obtained by using the

similarity transformation T such that

-
-V (4-14)

=1

>
Y =
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->
where Y 1is the potential function three-vector

>
Y =¢( H . (4-15)

‘ 2
( Vl uY 0 w Vl

) u% "(Vy 2=0 (4-16)

provided of course that G is semi-simple. We may now pick the

class of functions satisfying (4-16) and use the boundary conditions

S

> = >
determined by Y = T « V and the boundary conditions on Y to

choose the allowable eigenfunctions and eigenvalues.



Chapter 5

FINITE BEAM-INFINITE PLASMA SYSTEM

5.1 Introduction

We now consider a particular example to illustrate the methods
developed in the preceding chapters. We shall investigate the inter-
action of a finite beam in an infinite plasma where the Beam and
plasma are both warm and are assumed to have electron collisions with
neutrals and ions of the background. No d.c. magnetic field acts
in the problem and the a.c. magnetic field component, HZ , 1s as-
sumed to be zero so that we are looking for the transverse magnetic
(TM) modes that propagate in the system. In addition, the assump-
tion is made that all potentials are axisymmetric and there is no
variation of the beam-plasma quantities with respect to the polar

angle 6 .

Wy Uy V

7¢izp/p// ///

/ /

“;;;b’b ,am // o,
T

Fig. (5.1) BEAM-PLASMA SYSTEM
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This problem is very similar to the one that was previously
investigated by Crawford®® except that no quasi-static approxima-
tion is made here and the beam is assumed to be warm. The electron
beam is cylindrical in shape and interpenetrates the plasma

background.

5.2 Beam-Plasma Region

For the beam-plasma region, we must diagonalize the coupling
matrix as in Chapter 4 so that the equations describing the beam-

plasma region become:

2
Y A Y
2 2 - -
v2( U, 5+ A U, »= 0 (5-1)
2
Ys A3/ N3
and
Ez Ul
> = = >
X=¢( P S=5. U >=%.0 (5-2)
P 2
Py Us

where S is the similarity transform defined in Chapter 4 and E
Pp ’ Pb are the potential functions for our problem. The form of

(5-1) is obtained if the eigenvalues are distinct or the coupling
matrix, F , 1s semi-simple.
In a cylindrical system where the potentials have no 6

variation, the solutions to (5-1) are of the form:
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Ui = a; Jo()\i r) + bi YO(Ai r) (5-3)

where a; and bi are amplitude constants, Jo and Yo are the
zeroth order Bessel functions of the first and second kind, respec-

tively; and the xi are the square roots of the eigenvalues of F

which in general are complex.

5.3 Plasma Region

The equations in the plasma region are written in a form

similar to those of the beam-plasma region.

Vi My 1
v2 >+ = 0 (5-4)
i
; 2
V24 0 5 V2
and
Ez Vl
nd = = >
Y = =T -« =T «V (5-5)

where T is the similarity transform matrix as defined in Chapter 4.

The solutions for (5-4) are chosen to be of the form:

_ 1 2 -
Vi = ¢ Ho(ui r) + di H.o(ui r) (5-6)

where H% and Hg are the zeroth order Hankel functions of the

first and second kind, respectively, and the u, are the square
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roots of the eigenvalues of the coupling matrix G .

5.4 Boundary Conditions

The boundary conditions we shall apply to the system are
boundedness of the potential functions at the origin and the radi-
ation condition for large radii and the boundary conditions at the
beam-plasma~--plasma interface which are derived in Appendix C.

These conditions are written in the following manner:

Boundedness at the Origin

P - Bounded at r» = 0 (5-7)

Radiation Boundary Condition

lim r — + 3k = 0 (5-8)

where kr is the radial propagation constant. The conditions at

r=a are:

e B

- Continuous at r = a (5~9)

¥
’U<’U
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r=a+
€q EI’ o = Pgp (5-10)
- P
N, ev, (r=a-) = ——8b (5-11)
b “br .
J(w - ka)
> -> r=a+ ->
a, x H = Pgp Vb (5-12)
r=a-

The condition that $p be continuous at thelboundary is
actually the condition that vpr be continuous since vPe is
zero for this problem and the conditions that Ez and Pp be con-
tinuous forces vpz to be continuous because of the force equation
for the plasma electrons. The condition of boundedness at the

origin restricts the solutions (5-3) to be zeroth order Bessel func-

tions of the first kind only.

Ui = a; JO(Ai r) (5-13)

The radiation condition at large radius restricts the solutions

(5-6) to be the form:

_ 1
Vi = ¢ Ho(ui r) (5-14)
or
} 2 | -
V. =d; Hb(ui r) (5-15)

1
depending on the branch we choose for (uJ?_)'é , Since Hé(ui r)

decays while Hg(ui r) grows exponentially for the imaginary part
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of M

3 being positive and radius increasing. Thus, if the imaginary

part of My is positive we must choose the Hi function and if it
is negative, the Hg function. We can choose to pick only the Hi

function for either branch, however, since
2 - 1 -
Ho(- Y) = - HO(Y) (5-16)

so that if u; has a negative imaginary part, we shall choose the

potential function in the following form:

_ 1

The conditions at the boundary r = a can be written in the

following manner:

Ez(r=a+) = Ez(r=a—) (5-18)
Pp(r=a+) = Pp(r=a—) (5-19)
vpr(r'=a+) = vpr(r=a-) (5-20)
€ Er(r=a+) - €, Er(r=a-) = Pep (5-21)
Psb
Nbe vbr(r=a-) S . — (5-22)
jlw - ka)
He§r=a+) - He(r=a-) = Pgp Vb . (5-23)

Equations (5-21) and (5-22) give just one relation for Vi and Er
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so that we have five independent boundary conditions to be applied

at the boundary r = a and five unknown amplitude coefficients for

the five potential functions U: v .

We can write the relation (5-2) for the potentials in the

beam-plasma region in its expanded form.

3
s P T VIR TR jél 515 Y5
3
PP =8, U +5,, Uy + Sy Uy = jgl s2j s (5-24)
3
Pp # 831 Uy * 83, Up + 853Uy = j§l S35 U5
Similarly for the plasma region, the relation (5-5) becomes:
5
By = Ty Wy + Tyg Vg = 324 Ty5 Vs
(5-25)
5
PP = Ty, V) + Typ Ve = Jzu sz vJ .

The set of boundary conditions for the beam-plasma--plasma interface
can be obtained in terms of the potential functions Ui ’ Vi by

using the relations (5-18)-(5-23), (5-24), (5-25) and the relation-
ships derived in Chapter 2 for Er s H6 ’ Vpr , and Vip This set

of equations is written in its final form so that we have a set of

five homogeneous equations in terms of five unknown amplitude



87
coefficients.
a,P..J (Aa) +a,P..J (A,a)+ a.P..J (A.a)+C P, H-(u a)+C.P. H(ya)
1'11% 1% 7927125270 " 93713V 3 Y 140 My 515 0'"5
=0
1
alpzlJo(kla) + . * L] . L] . L] L ] . . L] . [ ] L] L] . . * 1 ] » C5P25Ho(u5a)
=0
~, 1
alPBIAlJl(Ala) + a2P32x2J1(12a) 2, . C5P35Hl(u5a)
=0
1
alP51A1Jl(Ala) + a2P52A2Jl(A2a) R CSPSSHl(usa)
=0 .

(5-26)

We have not as yet determined the eigenvalues which satisfy
this set of equations for arbitrary amplitude coefficien‘l?s. The
solutions for the eigenvalues can be obtained by requiring the
condition that the determinant of the matrix multiplying the coef-
ficients, a5 C; » must be zero in order to have non-trivial

solutions for these coefficients.

The procedure for determining the correct values of propagation
constant and eigenvalues is tﬁen as follows:
(1) Pick a value of the propagation constant k ,
which has both real and imaginary parts

(2) Calculate the eigenvalues Aj s oMy
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(3) Construct the boundary condition matrix whose
elements multiply the coefficients a; > ¢y
(4) Find the determinant of the matrix which must

be zero if there is to be a solution for the

problem.

This procedure must be an iteration scheme since one must change
the input k such that the determinant vanishes. A computer pro-
gram has been written to carry out these iterations and the final
results for the finite beam-infinite plasma system are given in
Figs. (5-2)-(5-4). A detailed description of the computer program

is given in Appendix E.

For curve (1) shown in Figs. (5-2) and (5-3), the "temperature"
of plasma electrons is of the order of .03 volts while that of the
beam is roughly .004 volts. The d.c. beam velocity corresponds
to an accelerating potential of about .8 volts and Vb/up =5.

This ratio for the unbounded system corresponds very nearly to the

maximum gain condition.

The parameters chosen, represent a very slow beam in a
relatively cool plasma. A comparison of the solutions for these
parameters and the corresponding solutions of Chapter 3 indicates
that the gain curves for the bounded system is considerably less
broadband and that the finite radius beam system has less maximum

gain.
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The solutions of the determinental equation indicated that
there were a number of solutions which satisfied the boundary
condition matrix for each set of parameters, however, it was found

that only one solution corresponded to wave phase velocities

<k = > which were slightly less than the beam velocity Vb and
real

could reasonably represent a traveling-wave instability.

Computations were performed for an infinite plasma-finite beam
system with parameters corresponding to those used by Crawford and
Cannara29 in a quasi-static cold beam analysis which also neglected
collisions. It was found that two solutions with both positive real
and imaginary propagation parts exist as was demonstrated by
Crawford and Cannara. However, it was observed that both solutions
had phase velocities slightly larger than the beam velocity. It is
believed from a physical point of view that these waves could not
represent traveling wave instabilities when the phase velocity is
greater than the beam velocity. Self has pointed out that in the
absence of collisions or temperatures of sufficient magnitude, the
instabilities appear to be absolute or non-convective and can be
stabilized by introducing sufficient collisions, such that only

traveling wave instabilities exist.

In an attempt to see this effect, a small amount of collisions
were introduced for both the beam and the plasma. It was found that
the collisions did slow the phase velocity of one wave to a point

where it always had a phase velocity less than or equal to the beam
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velocity. The second solution which had a smaller imaginary propa-
gation constant k; was not similarly affected by the collisions
and its phase velocity was greater than the beam velocity for

frequencies below the plasma frequency.

A comparison of the curve of Crawford and Cannara and the curve
computed with the effects of beam temperature, a.c. magnetic field

and collisions included is shown in Fig. (5-4).

It is to be noted here, that the collisions that were intro-
duced were very small in magnitude and did not alter the gain curve
so that the effects of collisions are seen only in slowing the wave

slightly.

The curves shown for the quasi-static cold beam system and the
exact analysis show good agreement for the real propagation constant,
but the exact analysis indicates somewhat greater gain and broader
bandwidth indicating that the effects of beam temperature or the
a.c. magnetic field are important.. It is expected that these
quantities would have a sizable effect on the beam-plasma boundary

conditions.

Thus, although the quasi-static zero beam temperature case is
much simpler to analize and gives a very good indication of the
shape of the propagation curve, it is felt that a more exact analysis

is needed to explain magnitude behavior of the propagation constant.
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Chapter 6

CONCLUSIONS

The theoretical development of Chapter 2 and the results
indicated in Chapter 5 demonstrate that the coupled equations de-
scribing a beam-plasma system can be solved exactly with the aid
of a high-speed digital computer and that the model chosen which
includes the effects of collisions, temperatures, finite boundaries,
a.c. magnetic fields and an external d.c. magnetic field is a self-
consistent model. It should be noted, that this model is based on
a small signal analysis and can not describe the beam-plasma inter-
action under conditions in which the a.c. perturbations are not
small compared to the d.c. quantities. In addition, the d.c.
magnetic field must be weak in order that the force term due to a
pressure can be approximated by a gradient of the scalar pressure.
One must keep in mind, also, that this model does not hold for all
ranges of plasma and beam parameters or excitation frequencies
since a number of assumptions were made concerning stationary ions
and neutrals and the plasma and beam electrons were assumed to
interact collectively through the a.c. electric and magnetic
fields. One would expect that for extremely high plasma densities

the model would not describe adequately the electron interaction.

The question arises as to whether a model chosen for beam

plasma interaction would be drastically changed if the effects of

9y




95

finite gradients in the d.c. plasma densities were considered.
Kollettis30 has shown in a study of surface waves on a plasma
colum that a slow radial density variation of a plasma column can
be accounted for satisfactorily by using an average electron
density. One might expect the same conditions would hold in an
electron beam-plasma experiment, since the potential solutions
(excepting the beam pressure) are very nearly the same as a func-
tion of the transverse or radial direction since in both systems,
the electromagnetic fields and the plasma pressures tend to
maximize near the beam-plasma interface. A comparison of experi-
mental results with theory would determine under which conditions
the d.c. variations can be neglected. It seems very reasonable
that in systems where the background plasma and the beam have
rapid variation with radius, the effects of nonuniformity would be
quite noticeable and the effects should be included if an accurate

model is to be obtained.

The results presented graphically in Chapter 5 do not include
effects of a d.c. magnetic field, however, the computer solution
proceeds in exactly the same manner and is not any more difficult
for the most general beam plasma problem. Searching for the roots
that satisfy the boundary condition matrix is rather tedious and
difficult, since the contours in the k plane generally have a
number of sharp minima. Also, because of the way in which the

simularity matrix is constructed, there are minima located at those
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points where two eigenvalues of the coupling matrix for the beam-
plasma region are equal. These minima were taken to be erroneous
solutions, although the possibility exists of having a solution
which corresponds to repeated eigenvalues as described in Chapter 4.
A search for all minima must be made and those solutions which

are not reasonable solutions are discarded.

The reason underlying this investigation was to develop a
general theory for the beam-plasma interaction which is tractible
and includes most of the physical mechanisms of the beam plasma
problem. A test of the validity of this model can only be obtained
by a comparison of theory with experiment, but it is believed that
including the effects of temperature and collisions in a non-quasi-
static approach for both the beam and plasma quantities should more

closely describe the physical problem.
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APPENDIX A

A.C. POWER RELATTIONS

The differential equations describing the beam-plasma wave

interaction are rewritten for convenience.

> . >
VXE+Juu H=o0 (A-1)
> . -+ -> -> ePb-\?
VxH—]weoE+Nbevb+NPevp+—T-0 (A-2)
ma
N(Gu+v )V +N e(E+v xB)+VP =0 (A-3)
m v e vV X = R
p YT T p * P ’

>

. - > -»> -> -»>
mNb(]w+{Vb-V}+vb)vb+N e(E +V xuOH+v xBO)

b b b
+VPb=0 (A-4)
u?mv.((N_Vv)+3jwuP =0 (A-5)
P PP P
PV
“ﬁmv'<Nb‘+’b+ b b>+ijb=0 ‘ (A-6)
mu.lzj :

The power relations are derived from the divergence of the

Poynting Vector.

e >x
E

> > >
V. (ExH) e VX E-

= « VxH
> > . > +% -» >
=-jwuy H*H +jwue E<E ~-E-J (A-7)
o (o)
where
97
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>
e PV
3=_(Nbe'\7b+Npe$p+——-——b b) (A-8)
2
M

ofe

and the asterisk, * , denotes the complex conjugate. The dot

»>%

>
product of E and J is obtained by using Equation (A-8).

-+ -
e P Vb + E
— (A-9)

\lb

o o%

My
"

b b P P

3

b > £3 e
—<N eV. E+N ev +E+

*
The dot products of Equation (A-3) with 3p and Equation (A-u4)

. >% > .
with v and Vb give:
* >% > >%
mN (Gu+v )V Vv +N eV +E+Vv +VP =0 (A-10)
p3® T p T Vp T Y p p |
N Go+v)v v +nN v e @ -0 (A-11)
M BphJe & vp? vy = vy TN vy b b ’ -
% ¥ > > %
+Nbevb-E+Nbevb-(VbxuoH)+vb'VPb-O,
. > > > > -+
mNb(jw+vb) Vb-vb+mNb Vb-(Vb°V) i (A-12)
> > >
+N eV, -E+V VP =0 .

Equations (A-9)-(A-12) are now used to write the expression for
> >

J - E:



M SN M S GE N S8 =N am

99
J e E=mNGo+tv)Yy -3+ . p (A-13)
D p’ p" Vp P

. > > +>% > -
+mNb(]w+vb) vy vb+mNbvb . (Vb . V) 158

*

+N % > - >4
b eV e (Vbx“oH)+vb'VPb

% +
v

P > e . - VP
. b b
%(jwwb)vb S Vptm Ve (Ve VY =2

o

+

2
mub

We can use the following relations to express (A-13) in a

different form:

b

V..V _ =zV.(P V)-—RZP (A-14)
p  'p PP 2N
P P
¥V . P PPV
% * *
v . yp + 2D Doy.(p 3F4 B DD
R b T,
' Y% Y Y Yy
(A-15)
Py PP p P
% Jw
EPTIN € -0 T R (O R T T WlhS0
b b wnN Db wN/ muwN
Y5 My Y% N Y%

% > %
PV P
>* b 'b > > b . > >
m{lb vyt } . {Vb v} vy + ——{m(ju + vb) Vi vb}

mup m uf
PV P
- % b b\.?> - b > -
=V . {n(Nb vy + >(Vb Vb% + 2{m vy Vb vb}
mu2 m u?
PV
<>
-mN_ v+ 2BV x vk Ty (A-16)
b b 2 b b
mu?
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where Equation (A-6) was used to reduce (A-15) to its final form

and the vector identity

> >
V(Vb .V

- -> -> >
b) = (Vb . V) 8 + Vb x (Vv x vb) (A-17)

was used to obtain (A-16).

Equation (A-7) is rewritten with the aid of Equations (A-13)-
(A-16).

* > & >
. PV PV
> >% £ % % >
Vv -(ExH +P§;’+P'\7+._b__1?_+mN$+£__b_(v.$)
pp "\t b Vb AL
Uy may

] H+«H + 3 E:+E N (3 )
= - Jw . we . -m + V.V
Jw u ] o pr Vp

. R [ Pp P jw P, P P
- m Nb(jw + vb)vb SVt

>% > > >3 b > >
- Nyewv - (Vpxu H+ m%\lbvb + - Vv x (v x vy b (A-18)

The last term in Equation (A-18) can be expressed in a

different manner with the aid of (A-4). The cross product of the

>
veam velocity, Vy with the curl of Equation (A-4) gives:

> -+ > . + ->
m N {juw + (V= 9>+ vb}{Vb XV x vl - ju N, e(Vy x Mo H)
- Ny eV = )V x u  H) + N c—:(BO © WV x vy) =0 .

%*
The dot product of (A-19) with .‘;b is written:
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. ‘ +% + -+ S5 > > o>
m Nb(jw + vb) vy (Vb XV x vb) +m Nb vy (Vb . V)(Vb xV x vb)

. >% nd -+ R -> - >
- Ju Nje vy o (V) x uH) -N e vy (V- IV x uH) = 0,
(A-20)

If the beam collision frequency, vy is zero; then
> > -+ +
m Nb Vb x (Vv x vb) = Nb e (Vb X U H) (A-21)

since Equation (A-20) requires the two terms to differ only by a

-+
constant (or the operator juw + Vb * V=0 --a trivial result) if

vy is zero. For the case in which beam collisions are neglected,

then, the power relation reduces to:

pr v pr Y
>% % % . >
v -(ExH +P$+Pb3;+—b—l +mNb31;+bb(vb-3b)
PP mu2 N muZ

b
> 3 % %
=-jeu H-H +jmeOE-E-mNp(jm+vp)$p-$p (A-22)
jw P P* jw P P*
. +> Sk JO P D J9 Ty Fp
- m Nb(Jw) Vp vyt +

T

2 2
m u¢ N m N
oy mu

The general power relation, (A-18), can be rewritten using

the relation:

(A}-23)

Sd
o
"
I
o
PN
U‘z
<
o v
+
qs)
o
<3
og
\_/

The result is:
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5>
L) \J P J
> % 5% b b m-a% > >
. + - -— - 3
v {%xH BV - W = 3 Vb}

> >%

->
=-jwuoH'H +]wsOE'E

ote
«

N(' +v)-> >
- w v ‘v
p Y7 Y Vp

% * (A-24)
g ijP ijP
-mN (Gw + v ) IR PE_D . b Db
b b® b b mu? N mu? N
P P ub b
mv, V. » v)
# MV Vp T VR e Xo.m 2 T >
- Pb - uﬁ + Jb . (Vb X U H) + E-(Vb X Jb) (V % vb) .

Equation (A-24) is of the form one usually sees in the description

of traveling wave tubes .2’

If we are dealing with longitudinal wave solutions, then
vV x E = - juw Mo ﬁ = 0 , and the power relation is obtained from
(A-24) by setting ﬁ equal to zero. The relation is actually
derived from Equation (A-2) but the result is the same one obtained

>
by setting H = 0 in (A-24).

The terms on the right hand side of (A-24) are interpreted in

the following manner:

(1) The first six terms correspond to time rate of
change of magnetic, electric, plasma electron kinetic,
beam electron kinetic, plasma accoustic potential, and
beam accoustic potential energies. Losses of kinetic

energy correspond to terms involving vp and Vv .
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(2) The term

> .
> (m 12 Vb . vb) is a power transfer
™Y
term which may produce a gain depending on the phases of

the beam pressure and beam velocity.

+* -> -» - 3 i
(3) Jp (Vb X g H) 1is a power interaction term

between the beam current and the Lorentz type electric

field introduced by the drifting beam.

m *ik > . . .
M) = (v, xJ )+ (Vxv) is a power interaction

e b b b
term which arises because of the rotational nature of
the veam velocity, -\;b . This term is familiar in form

to fluid dynamicists and for cases where -\;b xV x -\;b

is zero for nonvanishing _\;b and V x _‘;b , the velocity

vector is sometimes called the Beltrami vector and the

flow is called Beltrami flow. Again, we point out the
fact that the last two terms of (A-24) cancel if the

collision frequency in the beam, vy s is zero.

The terms on the left side of (A-24) correspond to energy

flux, where:

> ->
(1) ExH is the electromagnetic Poynting Vector,

(2) Pp 31; is the accoustic energy flux of the plasma

waves,
>k
- Pb Jb
(3) N is the accoustic energy flux of the
b
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beam waves,

y —m 'J** (‘* > . .

W) — pVp * V) is the d.c. to a.c. conversion
term that accounts for the gain in the beam-plasma
interaction. It is important to note that the a.c.
velocity of: the beam must have a component of velocity
parallel to the d.c. beam velocity in order for this

energy transfer to take place.




APPENDIX B
DERIVATION OF THE POTENTTAL FUNCTION EQUATIONS

We shall now derive a set of coupled second order differential

equations involving potential functions from which the total field

solution is obtained.

Taking the transverse curl of Equations (2-63) and (2-65), and

using the relations (2-58)-(2-62), we obtain:

> 2 ++. - >
-a, Vt EZ - jk a Vt . Et Jo ug Vt X Ht z - Vt X Jmt ,
(B-1)
2 o b
-a, vi Hz -Jka Vt . Ht - Jw ey Vt X Et
teV x (V. +N %.)=v xJ (B-2)
eV X D Upt b Vpt’ ¥ V¢ X Vet ° ‘
The transverse divergence of Equations (2-63) and (2-65) gives
. > > . > + (B-3)
jk a, - (Vt X Et) *Juou Vo Ht = -V, Jmt B-
. > > . '*+ N >
jka, - (Vt X Ht) -Jwe V. "E te b Vet vPt
-> >
Fe N Ve o v TV Jy (B-4)
Substituting Equation (2-64) into (B-3) and dividing by jw Mg
gives:
v, - J
> . t ' ‘mt k
[ -— - - + -
v, H - jkH = o g s (B-5)
o o
105
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which is just a form of Maxwell's constitutive relation

>
<> v Jm
vV » uo H = - *—_Jw H pm ; (B_B)

where P is an equivalent magnetic charge density. Multiplying

Equation (2-71) by the factor —— gives:

v mu?
h P
R jweP o
eN v v =-——2LP+ikeN v _+S-5 ., (B-7)
P P 2 P Pz _ 2 P
P P
From Equation (2-68),
P
Foz - Froz
-eE, jk P P2 py2nN PO
v, st ——F 4 P P . (B-8)
p MCu+ V) mNp(jw+vp) m N (Ju + vp)
Combining Equations (B-7) and (B-8) yields:
. k2 u?
e N Vt . -‘; + = - l—e w - —-—R—. P
1% P mu? (w-3v)/ P
P P
(B-9)
P F z
k eF - B__Poz
N e2 k E P2 mu? N
- =P . 24, € g 4 P_P .
o _ 2 P m( 2 )
m(jw ]vp) mup w - v,

We can derive the term er v £ " th in a similar manner.

Equation (2-72) is rewritten:
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c-) :—j—s - 3
er\7t Vht (w ka)P + jk e N Vi

mu% b b b
(B-10)
e
+ — Sy
g
From Equation (2-70),
v jk Pb ) e EZ
Z . .
m Nb(j{m -k Vb} + vb) m(j{w - k Vb} + vb)
Po._b ¢
bz m u% N boz
+ 5 (B-11)
m Nb(j{w -k Vb} + vb)
Combining Equations (B-10) and (B-11) yields:
. k2 u2
eN v v =-LE({y-kV}- % P
bt bt mu2 b {w-kV_ - v} b
b b~ I
(B-12)
P
b
keF,_ --———F
N, e? k e s, {bz muZ N, %
- E + + b
. vA .
m(w - k Vg = jv,) m u.g mw - k V- Jvp)

>
Equation (2-66) can be solved for V + ¥ H when Equations

(B-8) and (B-11) are used.
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- -ekP a 4 k a v
_ P z e A b
Ve X He = "Ei Y M
m(w ~ j vp) (w - k vy, - ]vb) uy
2 w?
-> -»>
* Jegle - - - = B2 * ez
(w - k Vb - va) (w -3 vp)
> P >
F,-——F (B-13)
P mu2 N po
+3 S P_P
m (w =3 v.)
p
P
e /)3 b 2 // s
PIE e T oy e/ WKy m Iy
Y b
N _ e?
b
where wﬁ p =-—1%E—-— are the squares of the beam and plasma
3
o

frequencies. Taking, now, the transverse divergence of Equation

(2-65) and using Equations (B-9), (B-12), and (B-13); the expression

->
for Vt . Et reduces to
-»>
> ~-eP e P v, = Jd
Vet By - 3K E, = 2 - B+ 2 =+ mt ez
Z nm uﬁ e, M us €, - Ju e o
P
{FPZ B 2 FPOZ}
. m us N
t—S 5 +—S 5 41X P_P (B-14)
mué(jweo) mué(jweo) P mwe (w -3 vp)

{%bz - PS 1:‘boz:}
L ike m u, N,

m we (w-kV jv, )

o
]
[}
<

o

which is just Maxwell's constitutive relation
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O

> e
VeE=z— ; (B-15)
o

where Pe is the electric charge density and here,

-
e P e P ve.ed e S e S
bt —L-—-—24+ B _,__0b (B-16)
mup m u? jw mup(jw) mubﬁjw)
P P
F_ -—P _F F,L - —2 _F
Pz mu2 N Doz bz mu2 N boz
+ ke D P +jj<e Y% Y
mw . mw . ’
(w -3 v.) (w—ka—jvb)
Py
where the ratios ——2—12 =0y D are the a.c. beam and plasma charge
9
™b,p
densities.

Taking the transverse curl of Equation (2-67) and substituting

Equations (2-64) and (B-9) and combining terms gives:

2 2 ,,2
N eV x-\; :w_uo__e_o_wEﬁ- eq W - kuE P
p t (w = 3v) z (- jo) m2] G- gv)f P
3 2
+f_€<ﬁﬁ’z_ﬁ —J.E———Vtx _ft__PP__'f' + (B-17)
(m—]vp)2 m(w-jvp) p mu;Np po
>

j 2 . 2 S . P
o 38 )% _jxe [, B . ’
(w -3 vp) (w - jvp) m ué m(w - jvp) PZ n u12> Np poz

->
» €©B
where Q = —59- is the cyclotron frequency vector.




110

In a similar manner, Nbe Vi X _‘;bt can be calculated by taking

the transverse curl of Equation (2-69) and using Equations (2-64),

(B-5), and (B-12).

2 % Qb
wt € > jk @ E
Nbe Ve X zbt = - b o - uo(w -k Vb)HZ - z
(w -k vy - va) (w-ka- Ivy)
-> k2 42
+ 3 [m-kvy- % }%
N, e (w-XkV_ =3 v)
B b b (B-18)
> . 5 ->
B , j e vV x 'F’ _ Pb Fbo‘t _ % €6 sz
. t bt 2 )
m(w - k Vb - j\)b) m ug Nb (w - ka—ij)
P,
e F_-—2 _F
> bz mu N boz
_ je e o 4 ke “b b
. b .
(w - KV - Jvp) mu% T -k Vp - 3vp)

We can now rewrite Equation (B-1) using the relations (B-13)

and (B-1u).
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(1)2 w2
V2 E + kz/ - P - b - k2)E
2%\ w- v wle - KV, - v ) z
) b b
+jke(°""o€o —LP sk e @Y &y 1
m e \(w—jv) 2 (P me_ \(w-kV_-3v.) 2
o P up o b b ug
+jwuoeVb}P
mulz) b
—>
> kv, «J
=3 V. xJ, - g __ke o, t et (B-19)
2 t mt mu2€ p m2€ b w €
P © Y & o
P F
_ _p _poz
k2 - k2 k2 - x2)e (P2 nmu2 N
-3 J + o D P
ez m we (w ~ jv.)
we jp
2 _ 2 bz 2 boz
+(k ko)e mubNb
b
m we (w—kvb-va)

whe k2 = 2 .
re k2 = w?uj e

Similarly, Equation (B-2) can be rewritten with the aid of

Equations (2-64), (B-5), (B-17), and (B-18).
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w? w2(w - kV.)
v2H +(k2(1 - p______ b b - x2bH
toz © wlw = jv ) w2(w - KV, - jv,) z
P b b

k2 u?
“p “ {eﬂ(o - va:>} P
- jk e Q + E +
° - jvb)2

(w - jvp) m u;
K2 y2
(w - ka) - b Pb
(w - ka - jvb)

5> -> k >
-a, - Vt X Jet + BE;'Vt . Jmt (B-20)
: w2 o2
. k2 - k2|1 - P _ b J
WH e} _ s _ _ mz
o wlw ]vP) wlw - k Vb jvb)
e > [; P >
e T
(w - Jv.) mus N
m(w jyp N
P
_ Je _>. > b >
m(w - kV._ - °v)az Vtx{Fbt m u? N Fbot
b~ % Y% b
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Taking the transverse divergence of (2-67) and using Equations
(B-9), (B-14), and (B-17) we obtain the differential equation for

the plasma pressure.

1 . Q2 .
V2P + = (u? - k2 w2 - - — (w2-jy w-k2u2)$ P
t°p uz{“’ 7°p? - TR s 3
P P
2 2 : 2 2m
__{*.)Rlp ,m /%o o %p H + e 1 ujPeE
w) P e le-3v J % Lw-jvoz )2
P P
-> . 2
SN e vt.Jet_kJez .,.JSOQwPEJ
p ju e, we (w—jvp)e mz
w2 w? - wlw - jv.)
+j_LSb+j P P S (B-21)
w2 w uéw P
k 2 ; _PP___
-3 w: - wlw -3 v) Fz— 2
wlw - j vp) p p p mu; Np po

The equation for the beam pressure is obtained by taking the

transverse divergence of (2-69) and using the relations (B-12),
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(B-13), (B-14), and (B-18).
1 .
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(w ka jvb)

2 2 2
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2m 2 2 2
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In the preceding development, it was rather academic to
assume sources in the problem since our investigation concerns
itself with the investigation of the modes that propagate in the
beam-plasma system. However, it is instructive to note the effects
of coupling when sources are introduced. One would expect that the
problem of investigating proper excitation for a particular wave
would be rather difficult since the sources are coupled in nearly

all of the potential equations.
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APPENDIX C

BOUNDARY CONDITIONS

Beam-Plasma--Plasma Interface

In a physical problem where an electron beam interpenetrates
a plasma, the transverse motion of the beam electrons in the
traveling wave produces a rippled boundary effect of the beam which

is shown in Fig. (C-1) for a particular instant of time.

_ /_/ o~ T T

e S

Fig. (C-1) Beam-Plasma--Plasma Interface

Since the boundary is not uniform at the nominal radius a for
the beam, it would be difficult to apply boundary conditions at

this interface.
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28 _, e s s .
Hahn = first used an artificial boundary condition which
accounts for the rippling of the beam by considering the beam

boundary to be fixed at the radius a and placing an equivalent

W)

Fig. (C-2) Cylindrical Shell Volume AV
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surface charge Pgp ON the boundary to account for the net space

charge of the scallop. The same approach will be used here to

represent the scallop effect of the beam-plasma--plasma interface.

We re-emphasize the fact that this is an artificial boundary condi-

tion that we are imposing on the beam but for situations where the

rippling is very small, (dr small compared to a) , this artifi-

cial boundary condition approaches the actual boundary condition.

For a cylindrical beam, we shall assume that we can construct

a cylindrical shell around the beam-plasma--plasma interface that

encloses the rippling of the beam as shown in Fig. (C-2).

Using the continuity equation for the beam

P e P_e
> b~ >\ _ . b
v - <Nbe vy + " Vb> = - Jw

2
m ul m ug
and the divergence theorem gives:
P e
>
INbe-\;b-;ds= J(—jw*-Vb'V) bde
AS AV ™ Yy
which can be written as:
P, e
> > - R b
J Nbe Vy *nds = - jlw - k Vb) j " dav
m
AS Ay ™ Y

(Cc-1)

(C-2)

(C-3)

The terms of the integrand of (C-3) are obtained from the first two

terms of a Taylor series expansion and the surface integral terms
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for (1) and (2) become:
a(Nbe Vbz)
- Nbe Vbz rd6 dr + Nbe vbz + ——-—32——-—-dz rdé dr
v (C-4)
- bz
-Nbe 37 a de dr dz

The integral over (3) and (4) gives:

- Nbe Vip rdé dz + 0 (C-5)

where the term from (4) is zero since the beam velocity is zero on

surface (4). From the remaining ends, we have the 6 components

which are given by:

aN. e v v
b~ "beé _
—a—é——drdzde-Nbe 56

dr dz de . (C-6)

The volume integral is given in the following form:

e Pb ePb
J(w - ka) I av = jlo - ka) ade dr dz . (c-7

2 2
av Y m s

Thus, Eq. (C-4) becomes, finally:

avbz avbe
Nbe 32 adedrdz-Nbevbrade dz+Nbe 56 dr dz dé6
e Pb
= jlw - ka) a de dr dz (C-8)
2
m
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e P

m

finite and will be defined as the negative of the surface charge

Since the volume AV encloses the scallop, the term dr is

density, Pep Therefore
jlw - k Vb) Pep = Ny e Vip (C-9)

since the other terms on the right side of Eq. (C-8) are on the

order of dr smaller.

In the preceding development, it was assumed that dr was
very small so that the contributions from the sides of the cylin-
drical shell were negligible compared to the contribution from the
radial current. At the same time, dr must be large enough to
enclose the total scallop of the beam. The thermal drift of the
beam was neglected and the results obtained should be a good approx-
imation to the actual boundary condition as long as the beam
temperature is low so that the thermal drift is small during a
periocd of the a.c. motion. Also, since dr is amplitude sensitive
and must be large enough for AV to enclose the scallop, the

boundary condition should be valid only for small signal analyses.

The question now arises whether one should also consider
contribution to the boundary charge due to the plasma background in
a manner similar to the development for the beam. It does not
appear reasonable to include effects of the plasma in the equivalent

surface charge since the reason for introducing the artificial
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boundary condition was to account for the rippling of the beam! The

- R 68

charge distribution due to the plasma has already been accounted for

e P

by the term - —2 » wWhich is the plasma volume charge density.

mu
p

One would certainly have to consider rippling in both beam and
plasma if it were assumed that the beam and plasma occupied com-

pletely different regions of space as would be the case for an

electron beam being surrounded by a plasma but not occupying the

same region as the plasma.

Discontinuity in the Electric Field

At the interface of the beam-plasma--plasma system, the normal
component of electric field is discontinuous by an amount propor-
tional to the surface charge on the boundary. The tangential
electric field must be continuous across the boundary. These con-

ditions may be expressed in the following form:

Psh (C-10)

=0 (C-11)

where N is the outward normal to the boundary surface, and (C-10)

is a statement of Gauss's law for the interface.
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Surface Current

The equivalent surface current at the beam-plasma--plasma
interface is just equal to the equivalent beam surface charge
density times the d.c. velocity of the beam. This surface current
causes the azimuthal magnetic field to be discontinuous at the

interface. Thus, the relations for the surface current and discon-

_’
tinuity in H become:

> >

JS = Pgp Vb (C-12)

> > at+ -»>

n x H = JS (C-13)
a_

As a consequence of assuming that the plasma background
occupies a region of space with the beam interpenetrating it and
the fact that the beam and plasma are coupled only through the
electric and magnetic fields, we must impose the additional boundary
conditions that the plasma pressure Pp and the plasma velocity
-+

vp are continuous across the interface. This is equivalent to

specifying that the a.c. plasma density and a.c. plasma current be

continuous across the interface.

We may now summarize the boundary conditions for the beam-

plasma--plasma interface:

Vip = Py (C-1u)
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(C-15)

(C-16)

(C-17)

(C-18)
(C-19)




APPENDIX D

UNIQUENESS OF POTENTIALS

Consider the set of equations

->
v2 U+ (A) U =0 (D-1)

<>
where U is the vector

eigenvalue matrix.

must satisfy are of

and

on the boundary and

L_O_ e o 0

The

the

e
wnll

wll
wll

el

. a; [ 0 . e e 0
. ajn s B = 0 0]
L] 0 B(j+1)l . - . L B(j+l)n
R Bnl 8rm

of eigenfunctions and {A} is the diagonal
boundary conditions which these functions

form:

->
= f

cy

(D-2)

wj

5 Sy
n
v

and ? are of the form

or a form where : and E do not have terms in the same row.

To prove uniqueness, we shall assume that more than one

eigenfunction satisfies each equation so that the difference

12y
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solution satisfies the following equation:
2 ->
ViUt l gy =0, (D-4%)

>

By premultiplying the conjugate of (D-4) by Uy and post multiply-
>
U.

ing (D-4) by we arrive at the following relations when the two
D g

dimensional divergence theorem is used:

->
-ﬁ aUD 4 G > + e < _
D o ¥ - Ve D Yt UDdS I{A }UDUDdS-O (D-5)
C S S

¥

> -> > > o
—n UD das - I Ve UD * UD das + I{A}UDUD ds = 0 (D-6)
C S S

The form of the last terms in (D-5) and (D-6) were dependent on the

fact that {A} 1is diagonal. On the contour C which encloses

the surface S , the boundary conditions are:

>

UD=0

and . (D-7)
*b
oan

e
(7]}

ol
wll

0

Thus, premultiplying (D-5) by S and (D-6) by BS and adding,
we obtain

>%

> g
D-VtUDdS'*{A}IUDUDdS

~~
el
+
i
N’
wil
! !
wn
—
<
+
jap

i
o
.

= = > %
- 2§ a S Im({2}) I U, U_ dS (D-8)

D™D
S




-l B e am

126

Since (a + B) and S have inverse matrices, the relation becomes

finally:
> >% >
-JthD-thDdS+{A} JUDUDdS
s s
p— - =1 - - == = *
-2 I SEG + )L o s JﬁDﬁDds=o (D-9)
S

The first term in (D-9) has negative definite diagonal terms
if ?JD is not the zero vector. The diagonal parts of the second
term are in general complex since {A} is generally complex. Thus,
in order to have a non-trivial solution for the difference vector,

the imaginary parts of the diagonals of the second and third terms

at least must cancel. Thus,

. = B_l = == _l = = > >%
Diagonal Part¢ {A"} Re{lI - 25 "(a + 8) " a S UD UD dSJ = 0

S

(D-10)

where A" is the imaginary part of {A} and I is the unit matrix.

> >k
JUD UD ds|,=0
S

(D-11)

Since A" is diagonal, (D-10) implies

Diagonal Part {Re K.T— - 2-—8-_1(: + E)-l o §>

For a given :, B one can check this condition and if any term is

non zero, uniqueness is guaranteed. For boundary conditions of the
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form

el
(%]
(@i
1"
H
@]
=
O

or (D-12)

w il
(V5]
(e 2
"
oa+
[e]
3
(@]

==
where o or B has an inverse, the uniqueness is easlly seen from

Equation (D-5) or (D-6).



APPENDIX E
COMPUTER PROGRAM
In this section, the computer program is given which was used

to solve the bounded beam-plasma system. This problem was pro-

grammed in Algol 60 and run on an UNIVAC 1107 computer at Case

Institute of Technology.
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A theoretical model based on the linearization of the fluid
pquations and Maxwell's equations for wave interaction in a uniform
plasma which is interpenetrated by a nonrelativistic electron beam is
developed. The effects of electron-neutral and electron-ion collisions
and temperatures of both the beam and plasma electrons are included and
no quasi-static approximation is made for the electromagnetic field. An

lation is deve]oped which is valid in the limit of small d.c. magnetic
fields and in the 1imit as the field becomes very large.. Graphs of the
computer solutions are given for the propagation constants in a beam-
plasma system for the cases of an unbounded system and for the TM wave
solutions that may exist in an axisymmetric cylindrical system in which
Ehe finite beam interpenetrates an unbounded plasma.

pxternal d.c. magnetic field is assumed to act so that a general formu-
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